z-logo
open-access-imgOpen Access
SUN-751 RORγ Is a Master Regulator of Tumor Lipid Metabolism
Author(s) -
Hongwu Chen
Publication year - 2020
Publication title -
journal of the endocrine society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.046
H-Index - 20
ISSN - 2472-1972
DOI - 10.1210/jendso/bvaa046.692
Subject(s) - lipid metabolism , gene silencing , regulator , biology , carcinogenesis , cholesterol , liver x receptor , cancer research , reprogramming , nuclear receptor , cancer , microbiology and biotechnology , gene , endocrinology , biochemistry , genetics , transcription factor
Lipid and cholesterol metabolism reprogramming is strongly linked to tumorigenesis and therapeutic resistance. Our recent genetic disruptions via CRISPR KO and gene silencing and pharmacological inhibition clearly demonstrated that nuclear receptor RORγ plays a crucial role in control of lipid and cholesterol biosynthesis gene programs specifically in certain types and subtypes of cancer cells and tumors. Indeed, its antagonists display potent tumor inhibitions in patient-derived xenografts (PDX) and in immune-intact tumor models. Interestingly, RORγ inhibition resulted in decreased cholesterol synthesis rate specifically in tumors without significant impact to the host animal cholesterol homeostasis. Our ChIP-seq demonstrated that in a subtype of breast cancer RORγ cistrome is largely overlapping with that of SREBP2, a well-established master regulator of lipid and cholesterol biosynthesis. Our further analyses found that RORγ functions dominantly over that of SREBP2 via its association with SREBP2 and facilitation of its genome-wide recruitment and histone H3K27 acetylation. Inhibition of RORγ completely negates the negative feedback activation of the cholesterol program induced by cholesterol-lowering drug statins and mediated by SREBP2. Treatment of animals with the antagonists in combination with statins showed a highly synergistic anti-tumor effects. Together, our study uncovers RORγ as a novel master regulator of lipid and cholesterol metabolism operating selectively in subtypes of cancer.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here