Role of Gut Microbiota and Short Chain Fatty Acids in Modulating Energy Harvest and Fat Partitioning in Youth
Author(s) -
Martina Goffredo,
Kendra Mass,
Elizabeth J. Parks,
David A. Wagner,
Emily Ann McClure,
Joerg Graf,
Mary Savoye,
Bridget Pierpont,
Gary W. Cline,
Nicola Santoro
Publication year - 2016
Publication title -
the journal of clinical endocrinology and metabolism
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.206
H-Index - 353
eISSN - 1945-7197
pISSN - 0021-972X
DOI - 10.1210/jc.2016-1797
Subject(s) - firmicutes , gut flora , bacteroidetes , propionate , butyrate , lipogenesis , biology , obesity , endocrinology , food science , medicine , biochemistry , fermentation , adipose tissue , 16s ribosomal rna , gene
Objective: We aimed at determining the relationship of the gut microbiota and short chain fatty acids with obesity and fat partitioning and at testing potential differences in the ability of gut microbiota to ferment equal amounts of carbohydrates (CHO) between lean and obese youth. Research Design and Methods: We analyzed the gut microbiota of 84 youth in whom body fat distribution was measured by fast-magnetic resonance imaging, de novo lipogenesis (DNL) quantitated using deuterated water, and the capability of gut flora to ferment CHO was assessed by 13C-fructose treatment in vitro. Results: A significant association was found between the Firmicutes to Bacteroidetes ratio, and the abundance of Bacteroidetes and Actinobacteria with body mass index, visceral and SC fat (all P < .05). Plasma acetate, propionate, and butyrate were associated with body mass index and visceral and SC fat (all P < .05) and with hepatic DNL (P = .01, P = .09, P = .04, respectively). Moreover, the rate of CHO fermentation from the gut flora was higher in obese than in lean subjects (P = .018). Conclusions: These data demonstrate that obese youth show a different gut flora composition than lean and that short chain fatty acids are associated with body fat partitioning and DNL. Also, the gut microbiota of obese youth have a higher capability than the gut flora of lean to oxidize CHO.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom