
Paraventricular Dynorphin A Neurons Mediate LH Pulse Suppression Induced by Hindbrain Glucoprivation in Female Rats
Author(s) -
Hitomi Tsuchida,
Parvin Mostari,
Koki Yamada,
Sae Miyazaki,
Yuki Enomoto,
N. Inoue,
Yoshihisa Uenoyama,
Hiroko Tsukamura
Publication year - 2020
Publication title -
endocrinology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.674
H-Index - 257
eISSN - 1945-7170
pISSN - 0013-7227
DOI - 10.1210/endocr/bqaa161
Subject(s) - endocrinology , medicine , kisspeptin , arcuate nucleus , arc (geometry) , gonadotropin releasing hormone , dynorphin , hypothalamus , luteinizing hormone , chemistry , neuropeptide y receptor , oxytocin , biology , neuropeptide , receptor , hormone , opioid peptide , opioid , geometry , mathematics
Malnutrition suppresses reproductive functions in mammals, which is considered to be mostly due to the inhibition of pulsatile gonadotropin-releasing hormone (GnRH)/gonadotropin secretion. Accumulating evidence suggests that kisspeptin neurons in the arcuate nucleus (ARC) play a critical role in the regulation of pulsatile GnRH/gonadotropin release. The present study aimed to examine if the hypothalamic dynorphin A (Dyn) neurons mediate the suppression of GnRH/luteinizing hormone (LH) pulses during malnutrition. Ovariectomized rats treated with a negative feedback level of estradiol-17β-treated (OVX+E2) were administered with intravenous (iv) or fourth cerebroventricle (4V) 2-deoxy-D-glucose (2DG), an inhibitor of glucose utilization, to serve as a malnutrition model. Central administration of a Dyn receptor antagonist blocked the iv- or 4V-2DG-induced suppression of LH pulses in OVX+E2 rats. The 4V 2DG administration significantly increased the number of Pdyn (Dyn gene)-positive cells co-expressing fos in the paraventricular nucleus (PVN), but not in the ARC and supraoptic nucleus (SON), and the iv 2DG treatment significantly increased the number of fos and Pdyn-co-expressing cells in the PVN and SON, but decreased it in the ARC. The E2 treatment significantly increased Pdyn expression in the PVN, but not in the ARC and SON. Double in situ hybridization for Kiss1 (kisspeptin gene) and Oprk1 (Dyn receptor gene) revealed that around 60% of ARC Kiss1-expressing cells co-expressed Oprk1. These results suggest that the PVN Dyn neurons, at least in part, mediate LH pulse suppression induced by the hindbrain or peripheral glucoprivation, and Dyn neurons may directly suppress the ARC kisspeptin neurons in female rats.