z-logo
open-access-imgOpen Access
Bisphenol A Exposure Disrupts Metabolic Health Across Multiple Generations in the Mouse
Author(s) -
Martha Susiarjo,
Frances Xin,
Amita Bansal,
Martha Stefaniak,
Changhong Li,
Rebecca A. Simmons,
Marisa S. Bartolomei
Publication year - 2015
Publication title -
endocrinology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.674
H-Index - 257
eISSN - 1945-7170
pISSN - 0013-7227
DOI - 10.1210/en.2014-2027
Subject(s) - offspring , endocrinology , biology , medicine , dna methylation , epigenetics , glucose homeostasis , phenotype , fetus , homeostasis , methylation , pregnancy , genetics , gene , diabetes mellitus , gene expression , insulin resistance
Accumulating evidence has suggested that a suboptimal early life environment produces multigenerational developmental defects. A proposed mechanism is stable inheritance of DNA methylation. Here we show that maternal bisphenol A (BPA) exposure in C57BL/6 mice produces multigenerational metabolic phenotypes in their offspring. Using various methods including dual-energy X-ray absorptiometry analyses, glucose tolerance tests, and perifusion islet studies, we showed that exposure to 10 μg/kg/d and 10 mg/kg/d BPA in pregnant F0 mice was associated with higher body fat and perturbed glucose homeostasis in F1 and F2 male offspring but not female offspring. To provide insight into the mechanism of the multigenerational metabolic abnormalities, we investigated the maternal metabolic milieu and inheritance of DNA methylation across generations. We showed that maternal glucose homeostasis during pregnancy was altered in the F0 but not F1 female mice. The results suggested that a compromised maternal metabolic milieu may play a role in the health of the F1 offspring but cannot account for all of the observed multigenerational phenotypes. We further demonstrated that the metabolic phenotypes in the F1 and F2 BPA male offspring were linked to fetal overexpression of the imprinted Igf2 gene and increased DNA methylation at the Igf2 differentially methylated region 1. Studies in H19(Δ3.8/+) mouse mutants supported the role of fetal Igf2 overexpression in altered adult glucose homeostasis. We conclude that early life BPA exposure at representative human exposure levels can perturb metabolic health across multiple generations in the mouse through stable inheritance of DNA methylation changes at the Igf2 locus.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here