z-logo
open-access-imgOpen Access
ETS1 Induces Human Trophoblast Differentiation
Author(s) -
Cherie A. Kessler,
Jerzy Stanek,
Keith F. Stringer,
Stuart Handwerger
Publication year - 2015
Publication title -
endocrinology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.674
H-Index - 257
eISSN - 1945-7170
pISSN - 0013-7227
DOI - 10.1210/en.2014-1760
Subject(s) - syncytiotrophoblast , trophoblast , ets1 , biology , cytotrophoblast , transcription factor , cellular differentiation , microbiology and biotechnology , activator (genetics) , gene , genetics , placenta , pregnancy , fetus
A possible role for the transcription factor v-ets avian erythroblastosis virus E26 oncogene homolog 1 (ETS1) in human trophoblast cell differentiation was examined using a highly enriched fraction of human mononuclear cytotrophoblast cells (CTBs) that differentiate spontaneously in vitro to a multinucleated syncytiotrophoblast cell (STB) phenotype. ETS1 mRNA and protein levels were abundant in freshly isolated CTBs and decreased as the cells differentiated. Silencing of ETS1 expression in freshly prepared CTBs markedly attenuated syncytialization, as demonstrated by desmoplakin staining, and blocked the induction of syncytin, the transcription factor activator protein-2α, placental lactogen, and other STB-specific genes. Conversely, overexpression of ETS1 in primary trophoblast cells induced STB marker gene mRNAs and transactivated each of the gene proximal promoters. Taken together, these findings strongly suggest a critical role for ETS1 in the induction of human villus CTB differentiation. The effect of ETS1 on syncytialization likely results, at least in part, from inhibition of syncytin expression, whereas the induction of STB marker genes likely results in part from transactivation by activator protein-2α.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here