Premium
A simplicity principle in unsupervised human categorization
Author(s) -
Pothos Emmanuel M.,
Chater Nick
Publication year - 2002
Publication title -
cognitive science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.498
H-Index - 114
eISSN - 1551-6709
pISSN - 0364-0213
DOI - 10.1207/s15516709cog2603_6
Subject(s) - simplicity , categorization , computer science , set (abstract data type) , artificial intelligence , machine learning , perception , process (computing) , psychology , philosophy , epistemology , neuroscience , programming language , operating system
We address the problem of predicting how people will spontaneously divide into groups a set of novel items. This is a process akin to perceptual organization. We therefore employ the simplicity principle from perceptual organization to propose a simplicity model of unconstrained spontaneous grouping. The simplicity model predicts that people would prefer the categories for a set of novel items that provide the simplest encoding of these items. Classification predictions are derived from the model without information either about the number of categories sought or information about the distributional properties of the objects to be classified. These features of the simplicity model distinguish it from other models in unsupervised categorization (where, for example, the number of categories sought is determined via a free parameter), and we discuss how these computational differences are related to differences in modeling objectives. The predictions of the simplicity model are validated in four experiments. We also discuss the significance of simplicity in cognitive modeling more generally.