z-logo
Premium
Encoding Categorical and Coordinate Spatial Relations Without Input‐Output Correlations: New Simulation Models
Author(s) -
Baker David P.,
Chabris Christopher F.,
Kosslyn Stephen M.
Publication year - 1999
Publication title -
cognitive science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.498
H-Index - 114
eISSN - 1551-6709
pISSN - 0364-0213
DOI - 10.1207/s15516709cog2301_2
Subject(s) - categorical variable , spatial relation , landmark , computer science , receptive field , metric (unit) , spatial organization , spatial analysis , encoding (memory) , pattern recognition (psychology) , artificial intelligence , mathematics , machine learning , statistics , ecology , operations management , economics , biology
Cook (1995) criticized Kosslyn, Chabris, Marsolek & Koenig's (1992) network simulation models of spatial relations encoding in part because the absolute position of a stimulus in the input array was correlated with its spatial relation to a landmark; thus, on at least some trials, the networks did not need to compute spatial relations. The network models reported here include larger input arrays, which allow stimuli to appear in a large range of locations with an equal probability of being above or below a “bar,” thus eliminating the confound present in earlier models. The results confirm the original hypothesis that as the size of the network's receptive fields increases, performance on a coordinate spatial relations task (which requires computing precise, metric distance) will be relatively better than on a categorical spatial relations task (which requires computing above/below relative to a landmark).

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom