z-logo
open-access-imgOpen Access
Magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) hyperthermia for primary rectal cancer: A virtual feasibility analysis.
Author(s) -
Kaitlyn Perry,
Robert Staruch,
Samuel Pichardo,
Yuexi Huang,
Merrylee McGuffin,
Ari Partanen,
Shun Wong,
Gregory J. Czarnota,
Kullervo Hynynen,
Kelvin Chan,
William Chu
Publication year - 2019
Publication title -
journal of global oncology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.002
H-Index - 17
ISSN - 2378-9506
DOI - 10.1200/jgo.2019.5.suppl.77
Subject(s) - medicine , magnetic resonance imaging , high intensity focused ultrasound , ultrasound , radiology , nuclear medicine , colorectal cancer , radiation therapy , hyperthermia , cancer
77 Background: MR-HIFU Hyperthermia (HT) is a non-invasive treatment modality with real-time thermometry that ensures accurate and precise heating of a target with minimal effect on adjacent tissue. This energy deposition within a tumour can produce local bioeffects resulting in thermal chemo- and radiosensitization. MR-HIFU has been shown to be safe and feasible in a companion phase I study for recurrent rectal cancer. The purpose of this study is to determine the feasibility of MR-HIFU in treating primary rectal tumours. Methods: With ethics approval, the anatomic characteristics and surrounding structures of rectal tumours diagnosed at Sunnybrook from 2014-2019 were retrospectively analyzed. Three orthogonal views of MR images were used to determine the potential ultrasound (US) beam path and organs at risk (OAR). In part 2 of the study, the gross tumour volume was delineated for 30 rectal tumours (10 low, mid &high). Image datasets were imported into the Sonalleve MR-HIFU workstation for virtual treatment simulation and planning to determine tumour targetability, coverage, optimal patient set-up, and transducer positioning. Results: Of the 105 tumours analyzed, 36, 52, and 17 were low, mid, and high, respectively. The average width of the acoustic window (sciatic notch) for the US beam path was 5.8 ± 1.4cm, average tumour length was 5.24 ± 2.0cm, and average beam path (skin to tumour edge) was 7.3 ± 1.9cm. Eighty one percent of tumours were ≤ 0.3cm from an OAR. Of the 24 virtually simulated tumours to date, 6/8 lower, 6/8 mid, and 1/8 upper rectal tumours were targetable by MR-HIFU. Conclusions: This is the first virtual analysis to evaluate MR-HIFU HT targetability in primary rectal cancer. Results from this study will support MR-HIFU HT as an option to enhance the treatment of primary rectal cancer. Acknowledgments: This study has been funded by the Canadian Cancer Society. Patient & tumour characteristics. [Table: see text]

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here