Optimal Donor Selection for Hematopoietic Cell Transplantation Using Bayesian Machine Learning
Author(s) -
Brent R. Logan,
Martin Maiers,
Rodney Sparapani,
Purushottam W. Laud,
Stephen R. Spellman,
Robert E. McCulloch,
Bronwen E. Shaw
Publication year - 2021
Publication title -
jco clinical cancer informatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.188
H-Index - 12
ISSN - 2473-4276
DOI - 10.1200/cci.20.00185
Subject(s) - interquartile range , medicine , transplantation , selection (genetic algorithm) , population , credible interval , hematopoietic cell , bayesian probability , confidence interval , hematopoietic stem cell transplantation , surgery , machine learning , computer science , haematopoiesis , artificial intelligence , biology , stem cell , environmental health , genetics
Donor selection practices for matched unrelated donor (MUD) hematopoietic cell transplantation (HCT) vary, and the impact of optimizing donor selection in a patient-specific way using modern machine learning (ML) models has not been studied.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom