Evaluating the Effect of Right-Censored End Point Transformation for Radiomic Feature Selection of Data From Patients With Oropharyngeal Cancer
Author(s) -
Luka Zdilar,
David M. Vock,
G. Elisabeta Marai,
Clifton D. Fuller,
Abdallah Mohamed,
Hesham Elhalawani,
Baher Elgohari,
Carly Tiras,
Austin B. Miller,
Guadalupe Canahuate
Publication year - 2018
Publication title -
jco clinical cancer informatics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.188
H-Index - 12
ISSN - 2473-4276
DOI - 10.1200/cci.18.00052
Subject(s) - random forest , feature selection , statistics , feature (linguistics) , calibration , proportional hazards model , artificial intelligence , statistic , mathematics , computer science , philosophy , linguistics
To evaluate the effect of transforming a right-censored outcome into binary, continuous, and censored-aware representations on radiomics feature selection and subsequent prediction of overall survival (OS) and relapse-free survival (RFS) of patients with oropharyngeal cancer.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom