Premium
Theoretical Approaches to the Evolution of Development and Genetic Architecture
Author(s) -
Rice Sean H.
Publication year - 2008
Publication title -
annals of the new york academy of sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.712
H-Index - 248
eISSN - 1749-6632
pISSN - 0077-8923
DOI - 10.1196/annals.1438.002
Subject(s) - modularity (biology) , evolutionary developmental biology , genetic architecture , principal (computer security) , cognitive science , evolutionary biology , development (topology) , computer science , biology , population , psychology , sociology , quantitative trait locus , mathematics , operating system , mathematical analysis , demography
Developmental evolutionary biology has, in the past decade, started to move beyond simply adapting traditional population and quantitative genetics models and has begun to develop mathematical approaches that are designed specifically to study the evolution of complex, nonadditive systems. This article first reviews some of these methods, discussing their strengths and shortcomings. The article then considers some of the principal questions to which these theoretical methods have been applied, including the evolution of canalization, modularity, and developmental associations between traits. I briefly discuss the kinds of data that could be used to test and apply the theories, as well as some consequences for other approaches to phenotypic evolution of discoveries from theoretical studies of developmental evolution.