z-logo
Premium
The Role of Mitochondria in Reactive Oxygen Species Metabolism and Signaling
Author(s) -
Starkov Anatoly A.
Publication year - 2008
Publication title -
annals of the new york academy of sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.712
H-Index - 248
eISSN - 1749-6632
pISSN - 0077-8923
DOI - 10.1196/annals.1427.015
Subject(s) - reactive oxygen species , mitochondrion , mitochondrial ros , oxidative stress , microbiology and biotechnology , intracellular , context (archaeology) , oxidative phosphorylation , biology , metabolism , chemistry , biochemistry , paleontology
Oxidative stress is considered a major contributor to the etiology of both “normal” senescence and severe pathologies with serious public health implications. Several cellular sources, including mitochondria, are known to produce significant amounts of reactive oxygen species (ROS) that may contribute to intracellular oxidative stress. Mitochondria possess at least 10 known sites that are capable of generating ROS, but they also feature a sophisticated multilayered ROS defense system that is much less studied. This review summarizes the current knowledge about major components involved in mitochondrial ROS metabolism and factors that regulate ROS generation and removal at the level of mitochondria. An integrative systemic approach is applied to analysis of mitochondrial ROS metabolism, which is “dissected” into ROS generation, ROS emission, and ROS scavenging. The in vitro ROS‐producing capacity of several mitochondrial sites is compared in the metabolic context and the role of mitochondria in ROS‐dependent intracellular signaling is discussed.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here