z-logo
Premium
Three Microbial Strategies for Plant Cell Wall Degradation
Author(s) -
Wilson David B.
Publication year - 2008
Publication title -
annals of the new york academy of sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.712
H-Index - 248
eISSN - 1749-6632
pISSN - 0077-8923
DOI - 10.1196/annals.1419.026
Subject(s) - degradation (telecommunications) , cell wall , chemistry , environmental science , biochemical engineering , computer science , biochemistry , engineering , telecommunications
Cellulolytic bacteria and fungi have been shown to use two different approaches to degrade cellulose. Most aerobic microbes secrete sets of individual cellulases, many of which contain a carbohydrate binding molecule (CBM), which act synergistically on native cellulose. Most anaerobic microorganisms produce large multienzyme complexes called cellulosomes, which are usually attached to the outer surface of the microorganism. Most of the cellulosomal enzymes lack a CBM, but the cohesin subunit, to which they are bound, does contain a CBM. The cellulases present in each class show considerable overlap in their catalytic domains, and processive cellulases (exocellulases and processive endocellulases) are the most abundant components of both the sets of free enzymes and of the cellulosomal cellulases. Analysis of the genomic sequences of two cellulolytic bacteria, Cytophaga hutchinsonii , an aerobe, and Fibrobacter succinogenes , an anaerobe, suggest that these organisms must use a third mechanism. This is because neither of these organisms, encodes processive cellulases and most of their many endocellulase genes do not encode CBMs. Furthermore, neither organism appears to encode the dockerin and cohesin domains that are key components of cellulosomes.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here