Premium
Treatment of Neurodegenerative Disorders with Radical Nanomedicine
Author(s) -
SINGH NEERAJ,
COHEN COURTNEY A.,
RZIGALINSKI BEVERLY A.
Publication year - 2007
Publication title -
annals of the new york academy of sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.712
H-Index - 248
eISSN - 1749-6632
pISSN - 0077-8923
DOI - 10.1196/annals.1403.015
Subject(s) - nanomedicine , oxidative stress , nanotechnology , cerium oxide , chemistry , pharmacology , neuroscience , medicine , nanoparticle , materials science , biology , oxide , biochemistry , organic chemistry
In engineering and materials science, nanotechnology has provided many advances that effectively reduce oxidative damage generated by free radical production. Despite such advances, there has been little application to biomedical problems. Increased oxidative stress and free radical production are associated with neurodegenerative conditions, including aging, trauma, Alzheimer's and Parkinson's diseases, and many others. The antioxidant properties of cerium oxide nanoparticles show promise in the treatment of such diseases. Here, we summarize the work on the biological antioxidant actions of cerium oxide nanoparticles in extension of cell and organism longevity, protection against free radical insult, and protection against trauma‐induced neuronal damage. We discuss establishment of effective dosing parameters, along with the physicochemical properties that regulate the pharmacological action of these new nanomaterials. Taken together, these studies suggest that nanotechnology can take pharmacological treatment to a new level, with a novel generation of nanopharmaceuticals.