Premium
Methionine Sulfoxide Reduction and the Aging Process
Author(s) -
KOC AHMET,
GLADYSHEV VADIM N.
Publication year - 2007
Publication title -
annals of the new york academy of sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.712
H-Index - 248
eISSN - 1749-6632
pISSN - 0077-8923
DOI - 10.1196/annals.1395.042
Subject(s) - msra , methionine , methionine sulfoxide , methionine sulfoxide reductase , cysteine , biochemistry , amino acid , multicellular organism , chemistry , yeast , sulfoxide , biology , enzyme , cell , organic chemistry
: Aging has been described for multicellular and asymmetrically dividing organisms, but the mechanisms are poorly understood. Oxidation of proteins is considered to be one of the major factors that leads to aging. Oxidative damage to proteins results in the oxidation of certain amino acid residues, among which oxidation of sulfur‐containing amino acids, methionine and cysteine, is notable because of the susceptibility of these residues to damage, and occurrence of repair mechanisms. Methionine sulfoxide reductases, MsrA and MsrB, are thioredoxin‐dependent oxidoreductases that reduce oxidized forms of methionine, methionine sulfoxides, in a stereospecific manner. These enzymes are present in all cell types and have shown to be regulating life spans in mammals, insects, and yeast. Here, their roles in modulating yeast life span are discussed.