z-logo
Premium
Cellular Basis for the Repolarization Waves of the ECG
Author(s) -
ANTZELEVITCH CHARLES
Publication year - 2006
Publication title -
annals of the new york academy of sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.712
H-Index - 248
eISSN - 1749-6632
pISSN - 0077-8923
DOI - 10.1196/annals.1380.021
Subject(s) - endocardium , repolarization , j wave , brugada syndrome , cardiology , medicine , physics , neuroscience , electrophysiology , psychology
 One hundred years after Willem Einthoven first recorded the electrocardiogram (ECG), physicians and scientists are still debating the cellular basis for the various waves of the ECG. In this review, our focus is on the cellular basis for the J, T, and U waves of the ECG. The J wave and T wave are thought to arise as a consequence of voltage gradients that develop as a result of the electrical heterogeneities that exist within the ventricular myocardium. The presence of a prominent action potential notch in epicardium but not endocardium gives rise to a voltage gradient during ventricular activation that inscribes the J wave. Transmural and apico‐basal voltage gradients developing as a result of difference in the time course of repolarization of the epicardial, M, and endocardial cell action potentials, and the more positive plateau potential of the M cell contribute to inscription of the T wave. Amplification of these heterogeneities results in abnormalities of the J wave and T wave, leading to the development of the Brugada, long QT, and short QT syndromes. The basis for the U wave has long been a matter of debate. One theory attributes the U wave to mechanoelectrical feedback. A second theory ascribes it to voltage gradients within ventricular myocardium and a third to voltage gradients between the ventricular myocardium and the His–Purkinje system. Although direct evidence in support of any of these three hypotheses is lacking, recent studies involving the short QT syndrome have generated renewed interest in the mechanoelectrical hypothesis.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here