Premium
Assessing Potential Propulsion Breakthroughs
Author(s) -
MILLIS MARC G.
Publication year - 2005
Publication title -
annals of the new york academy of sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.712
H-Index - 248
eISSN - 1749-6632
pISSN - 0077-8923
DOI - 10.1196/annals.1370.023
Subject(s) - context (archaeology) , spacecraft propulsion , process (computing) , variety (cybernetics) , propulsion , credibility , space (punctuation) , space exploration , computer science , data science , aerospace engineering , engineering , artificial intelligence , political science , paleontology , law , biology , operating system
A bstract : The term, propulsion breakthrough , refers to concepts like propellantless space drives and faster‐than‐light travel, the kind of breakthroughs that would make interstellar exploration practical. Although no such breakthroughs appear imminent, a variety of investigations have begun. During 1996–2002 NASA supported the breakthrough propulsion physics project to examine physics in the context of breakthrough spaceflight. Three facets of these assessments are now reported: (1) predicting benefits, (2) selecting research, and (3) recent technical progress. Predicting benefits is challenging, since the breakthroughs are still only notional concepts, but energy can serve as a basis for comparison. A hypothetical space drive would require many orders of magnitude less energy than a rocket for journeys to our nearest neighboring star. Assessing research options is challenging when the goals are beyond known physics and when the implications of success are profound. To mitigate the challenges, a selection process is described where: (1) research tasks are constrained to only address the immediate unknowns, curious effects, or critical issues; (2) reliability of assertions is more important than their implications ; and (3) reviewers judge credibility rather than feasibility . The recent findings of a number of tasks, some selected using this process, are discussed. Of the 14 tasks included, six reached null conclusions, four remain unresolved, and four have opportunities for sequels. A dominant theme with the sequels is research about the properties of space, inertial frames, and the quantum vacuum.