z-logo
Premium
A Phenotypic Perspective on Mammalian Oxygen Sensor Candidates
Author(s) -
BAYSAL BORA E.
Publication year - 2006
Publication title -
annals of the new york academy of sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.712
H-Index - 248
eISSN - 1749-6632
pISSN - 0077-8923
DOI - 10.1196/annals.1353.024
Subject(s) - phenotype , biology , germline , genetics , alternative oxidase , germline mutation , population , gene , mutation , medicine , environmental health
 Chronic hypoxic stimulation in mammals can induce several phenotypic changes, such as polycythemia, pulmonary vascular changes, pulmonary hypertension, and carotid body (CB) enlargement. These phenotypic alterations provide a tool to test whether an oxygen sensor candidate is involved in an organism's response to environmental hypoxia. Here I evaluate the phenotypic evidence for several commonly considered oxygen sensor candidates. Germline mutations in NADPH oxidase, mitochondrial complexes I, III, IV, and heme oxygenase 2 genes cause different phenotypic consequences, suggesting distinct physiological roles rather than oxygen sensing. Germline mutations in VHL and HIF1 prolyl hydroxylase 2 genes cause polycythemia consistent with their role in oxygen homeostasis. However, it is unclear whether environmental variations affecting oxygen availability modify their phenotype, as would be expected from a defect in an oxygen sensor. Succinate dehydrogenase (SDH); mitochondrial complex II) germline mutations cause CB paragangliomas and there is evidence that the severity and the population genetics of paragangliomas may be influenced by altitude. Thus, from a phenotypic perspective, succinate dehydrogenase (SDH) appears to be a well‐supported oxygen sensor candidate. It is suggested that a universal oxygen sensor candidate must be supported by evidence from multiple layers of biological complexity.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here