z-logo
Premium
The Basic Dynamical Mechanism in Spiral Galaxies
Author(s) -
PFENNIGER DANIEL,
REVAZ YVES
Publication year - 2005
Publication title -
annals of the new york academy of sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.712
H-Index - 248
eISSN - 1749-6632
pISSN - 0077-8923
DOI - 10.1196/annals.1350.014
Subject(s) - physics , spiral galaxy , astrophysics , galaxy , spiral (railway) , dark matter , mathematical analysis , mathematics
A bstract : This paper explicates the most fundamental mechanism that rules spiral galaxies. Although spiral galaxies are complex systems for which we do not yet have a complete understanding, the dark matter being the most severe unknown, it is possible to pinpoint the few physical factors that determine their most important properties, such as bars and spiral arms. Dynamics linked to the dissipative nature of gas and its transformation into stars provides clues that spiral galaxies are driven by dissipation close to a state of marginal stability with respect to the dynamics in the galaxy plane. Here, we present numerical evidence suggesting that warps play a similar role but in the transverse direction. N ‐body simulations show that typical galactic disks are also marginally stable with respect to a bending instability, leading to typical observed warps. The frequent occurrence of warps and asymmetries in the outer galactic disks, like bars in the inner disks, give new constraints on the dark matter, but this time in the outer disks.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here