z-logo
Premium
Developmental Regulation of Basal Ganglia Circuitry during the Sensitive Period for Vocal Learning in Songbirds
Author(s) -
BOTTJER SARAH W.
Publication year - 2004
Publication title -
annals of the new york academy of sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.712
H-Index - 248
eISSN - 1749-6632
pISSN - 0077-8923
DOI - 10.1196/annals.1298.037
Subject(s) - vocal learning , babbling , auditory feedback , vocal communication , psychology , songbird , process (computing) , period (music) , neuroscience , auditory perception , singing , communication , cognitive psychology , computer science , biology , perception , acoustics , paleontology , linguistics , philosophy , physics , operating system
A bstract : A hallmark of sensitive periods of development is an enhanced capacity for learning, such that experience exerts a profound effect on the brain resulting in the establishment of behaviors and underlying neural circuitry that can last a lifetime. Songbirds, like humans, have a sensitive period for vocal learning: they acquire the sounds used for vocal communication during a restricted period of development. In principle, any organism that undertakes vocal learning is faced with the same challenge: to form some representation of target vocal sounds based on auditory experience, and then to translate that auditory target into a motor program that reproduces the sound. Both birds and humans achieve this translation by using auditory (and other) feedback resulting from incipient vocalizations (“babbling” in humans, “subsong” in birds) to adjust motor commands until vocal output produces a good copy of the target sounds. Similarities between vocal learning in birds and humans suggest that many aspects of the learning process have evolved to meet demands imposed by vocal communication. Thus songbirds provide a valuable animal model in which to study the physiological basis of learned vocal communication and the nature of sensitive periods in general. In this article, I describe aspects of both behavioral and neural frameworks that currently inform our thinking about mechanisms underlying vocal learning and behavior in songbirds, and highlight ideas that may need re‐examination.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here