
Coupled magnetic resonance and electrical resistivity tomography: An open-source toolbox for surface nuclear-magnetic resonance
Author(s) -
Nico Skibbe,
Raphael Rochlitz,
Thomas Günther,
Mike MüllerPetke
Publication year - 2020
Publication title -
geophysics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.178
H-Index - 172
eISSN - 1942-2156
pISSN - 0016-8033
DOI - 10.1190/geo2019-0484.1
Subject(s) - electrical resistivity and conductivity , electrical resistivity tomography , computational physics , computer science , tomography , geophysics , nuclear magnetic resonance , materials science , geology , physics , optics , quantum mechanics
Nuclear-magnetic resonance (NMR) is a powerful tool for groundwater system imaging. Ongoing developments in surface NMR, for example, multichannel devices, allow for investigations of increasingly complex subsurface structures. However, with the growing complexity of field cases, the availability of appropriate software to accomplish the in-depth data analysis becomes limited. The open-source Python toolbox coupled magnetic resonance and electrical resistivity tomography (COMET) provides the community with a software for modeling and inversion of complex surface NMR data. COMET allows the NMR parameters’ water content and relaxation time to vary in one dimension or two dimensions and accounts for arbitrary electrical resistivity distributions. It offers a wide range of classes and functions to use the software via scripts without in-depth programming knowledge. We validated COMET to existing software for a simple 1D example. We discovered the potential of COMET by a complex 2D case, showing 2D inversions using different approximations for the resistivity, including a smooth distribution from electrical resistivity tomography (ERT). The use of ERT-based resistivity results in similar water content and relaxation time images compared with using the original synthetic block resistivity. We find that complex inversion may indicate incorrect resistivity by non-Gaussian data misfits, whereas amplitude inversion shows well-fitted data, but leading to erroneous NMR models.