z-logo
open-access-imgOpen Access
Quantifying and correcting residual azimuthal anisotropic moveout in image gathers using dynamic time warping
Author(s) -
Luke Decker,
Qunshan Zhang
Publication year - 2020
Publication title -
geophysics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.178
H-Index - 172
eISSN - 1942-2156
pISSN - 0016-8033
DOI - 10.1190/geo2019-0324.1
Subject(s) - normal moveout , anisotropy , image warping , orientation (vector space) , residual , azimuth , flattening , ellipse , isotropy , eccentricity (behavior) , geology , seismic anisotropy , computer science , optics , algorithm , geometry , artificial intelligence , mathematics , physics , astronomy , law , political science
We have developed a novel application of dynamic time warping (DTW) for correcting residual moveout in image gathers, enhancing seismic images, and determining azimuthal anisotropic orientation and relative intensity when moveout is caused by wave propagation through a medium possessing elliptical horizontally transverse isotropy (HTI). The method functions by first using DTW to determine the sequences of integer shifts that most closely match seismic traces within an image gather to its stack and then applying those shifts to flatten the gather. Flattening shifts are fitted to an ellipse to provide an approximation for the orientation and relative strength of elliptical HTI anisotropy. We evaluated the method on synthetic and 3D field data examples to show how it is able to (1) correct for residual azimuthal anisotropic moveout, (2) accurately recover high-frequency information and improve feature resolution in seismic images, and (3) determine the anisotropic orientation while providing a measure of relative strength of elliptic anisotropy. Although the method is not intended to replace anisotropic processing techniques for moveout correction, we find that it has the ability to inexpensively approximate the effects of such operations while providing a representation of the elliptic HTI anisotropy present within a volume.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here