Application of a linear finite-frequency theory to time-lapse crosswell tomography in ultrasonic and numerical experiments
Author(s) -
Jesper Spetzler,
D. Sijacic,
KarlHeinz Wolf
Publication year - 2007
Publication title -
geophysics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.178
H-Index - 172
eISSN - 1942-2156
pISSN - 0016-8033
DOI - 10.1190/1.2778767
Subject(s) - tomography , ultrasonic sensor , geology , waveform , finite volume method , acoustics , geophysics , mechanics , optics , computer science , physics , telecommunications , radar
Time-lapse seismic monitoring is the geophysical discipline whereby multiple data sets recorded at the same location but at different times are used to locate and quantify temporal changes in the elastic parameters of the subsurface. We validate a time-lapse monitoring method by crosswell tomography using two types of wavefield-modeling experiments: (1) a 3D real ultrasonic waveform experiment and (2) 2D synthetic finite-difference wavefield simulations. For both wavefield experiments, a time-lapse structure simulating a fluid sweep in a reservoir layer is applied. The time-lapse tomographic monitoring approach is based on the standard ray theory and a finite-frequency wavefield theory, where the latter takes into account the finite-frequency properties of recorded wavefields. The inverted time-lapse models compiled with either the ray theory or the finite-frequency wavefield theory locate and correctly quantify the flooding zone in the simulated fluid sweep model. Both wavefield theories provide an adequate result because the flooding zone is comparable in size to the Fresnel volume.GeotechnologyCivil Engineering and Geoscience
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom