General representations for wavefield modeling and inversion in geophysics
Author(s) -
Kees Wapenaar
Publication year - 2007
Publication title -
geophysics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.178
H-Index - 172
eISSN - 1942-2156
pISSN - 0016-8033
DOI - 10.1190/1.2750646
Subject(s) - inversion (geology) , reciprocity (cultural anthropology) , geophysics , wave equation , geology , matrix (chemical analysis) , mathematical analysis , mathematics , physics , seismology , psychology , social psychology , materials science , composite material , tectonics
Acoustic, electromagnetic, elastodynamic, poroelastic, and electroseismic waves are all governed by a unified matrix-vector wave equation. The matrices in this equation obey the same symmetry properties for each of these wave phenomena. This implies that the wave vectors for each of these phenomena obey the same reciprocity theorems. By substituting Green's matrices in these reciprocity theorems, unified wavefield representations are obtained. Analogous to the well-known acoustic wavefield representations, these unified representations find applications in geophysical modeling, migration, inversion, multiple elimination, and interferometry
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom