Premium
HIV accomplices and adversaries in macrophage infection
Author(s) -
Wahl Sharon M.,
GreenwellWild Teresa,
Vázquez Nancy
Publication year - 2006
Publication title -
journal of leukocyte biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.819
H-Index - 191
eISSN - 1938-3673
pISSN - 0741-5400
DOI - 10.1189/jlb.0306130
Subject(s) - biology , macrophage , human immunodeficiency virus (hiv) , virology , immunology , genetics , in vitro
Cell surface and intracellular proteins in macrophages influence various steps in the life cycle of lentiviruses. Characterization of these restriction and/or cofactors is essential to understanding how macrophages become unwitting HIV hosts and in fact, can coexist with a heavy viral burden. Although many of the cellular pathways co‐opted by HIV in macrophages mimic those seen in CD4 + T cells, emerging evidence reveals cellular constituents of the macrophage, which may be uniquely usurped by HIV. For example, in addition to CD4 and CCR5, membrane annexin II facilitates early steps in infection of macrophages, but not in T cells. Blockade of this pathway effectively diminishes macrophage infection. Viral binding engages a macrophage‐centric signaling pathway and a transcriptional profile, including genes such as p21, which benefit the virus. Once inside the cell, multiple host cell molecules are engaged to facilitate virus replication and assembly. Although the macrophage is an enabler, it also possesses innate antiviral mechanisms, including apolipoprotein B mRNA‐editing enzyme‐catalytic polypeptide‐like 3G (APOBEC3) family DNA‐editing enzymes to inhibit replication of HIV. Differential expression of these enzymes, which are largely neutralized by HIV to protect its rebirth, is associated with resistance or susceptibility to the virus. Higher levels of the cytidine deaminases endow potential HIV targets with a viral shield, and IFN‐α, a natural inducer of macrophage APOBEC expression, renders macrophages tougher combatants to HIV infection. These and other manipulatable pathways may give the macrophage a fighting chance in its battle against the virus.