Premium
Fas receptor signaling is requisite for B cell differentiation
Author(s) -
Valérie Pasqualetto,
Florence Vasseur,
Flora Zavala,
Elke Schneider,
Sophie Ezine
Publication year - 2005
Publication title -
journal of leukocyte biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.819
H-Index - 191
eISSN - 1938-3673
pISSN - 0741-5400
DOI - 10.1189/jlb.0105047
Subject(s) - biology , fas ligand , chimera (genetics) , haematopoiesis , progenitor cell , microbiology and biotechnology , bone marrow , immunology , receptor , spleen , apoptosis , stem cell , genetics , programmed cell death , gene
The Fas/Fas ligand (FasL) pathway has been largely implicated in the homeostasis of mature cells. However, it is still unclear whether it plays a role at the progenitor level. To address this issue, we created chimeric mice by transferring C57BL/6 bone marrow (BM) cells of the lpr (Fas − FasL + ) or gld (Fas + FasL − ) genotype into Rag‐2 −/− hosts of the same genetic background. In this model, the consequences of a deficient Fas/FasL pathway on lymphoid differentiation could be evaluated without endogenous competition. Analysis of the chimerism revealed a differential sensitivity of hematopoietic lineages to the lack of Fas receptor signaling. While donor‐derived myelo‐monocytic cells were similarly distributed in all chimeric mice, mature B cells were deleted in the BM and the spleen of lpr chimera, leading to the absence of the marginal zone (MZ) as detected by immunohistology. In contrast, B cell hematopoiesis was complete in gld chimera but MZ macrophages undetectable. These defects suggest a direct and determinant dual role of FasL regulation in negative selection of B cells and in maintenance of the MZ.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom