z-logo
open-access-imgOpen Access
Synthetic Lethality Induced by Loss of PKC and Mutated Ras
Author(s) -
Tongbo Zhu,
Lihua Chen,
Wei Du,
Takanori Tsuji,
Changyan Chen
Publication year - 2010
Publication title -
genes and cancer
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.883
H-Index - 71
eISSN - 1947-6027
pISSN - 1947-6019
DOI - 10.1177/1947601909360989
Subject(s) - synthetic lethality , lethality , medicine , protein kinase c , microbiology and biotechnology , biology , genetics , signal transduction , dna repair , dna
Synthetic lethal interaction between oncogenic Ha-ras and loss of PKC has been demonstrated. Recently, the authors reported that the concurrent knockdown of PKC α and β, via upregulating PKC δ, sensitizes cells with aberrant Ras signaling to apoptosis. As a continuation of the study, using shRNA, the authors demonstrate that loss of PKC δ causes a lethal reaction in NIH3T3/Hras or prostate cancer DU145 cells that overexpress JNK. In this apoptotic process, PKC α and β are upregulated and then associated with RACK1 (an adaptor for activated PKC) and JNK. Immunoblotting analysis shows that JNK is phosphorylated, accompanied with caspase 8 cleavage. The inhibition of JNK abrogates this apoptotic process triggered by PKC δ knockdown. Interestingly, without blocking PKC δ, the concurrent overexpression of wt- or CAT-PKC α and β is insufficient to induce apoptosis in the cells. Together with the authors' previous findings, the data suggest that PKC α/β and δ function oppositely to maintain a balance that supports cells expressing v-ras to survive and prevents them from being eliminated through oncogenic stress-induced apoptosis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom