
Transcriptome Analysis of Oleaginous Fungus Mucor circinelloides WJ11 in Response to Exogenous Soybean Oil as Carbon Source
Author(s) -
Caili Sun,
Aabid Manzoor Shah,
Junhuan Yang,
Zongmin Wang,
Zhu Lan-lan,
Yuanda Song
Publication year - 2021
Publication title -
natural product communications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.221
H-Index - 44
eISSN - 1934-578X
pISSN - 1555-9475
DOI - 10.1177/1934578x211023366
Subject(s) - mucor circinelloides , biochemistry , biology , transcriptome , biosynthesis , lipid metabolism , gene , gene expression , botany , mucor , aspergillus
Mucor circinelloides is an oleaginous fungus that utilizes a wide variety of carbon substrates for its growth. The different sources of carbon strongly influence the total lipid content of the fungus. These different carbon substrates are assimilated and dissimilated through different metabolic pathways before entering into the TAG synthesis pathway. In the present study, we attempted to explore the mechanism of ex-novo lipid biosynthesis in M. circinelloides WJ11 in response to exogenous plant oil as a carbon source through transcriptomic analysis. The lipid content of WJ11 grown in a media containing mixed soybean oil with glucose as a carbon source was up to 43.8%, an increase of 13.9% as compared to glucose alone as the carbon source. RNA-Seq analysis was performed to investigate global gene expression patterns in the oil-treated WJ11. Based on RNA-seq analysis, among the 4646 differentially expressed genes (DEGs), 2379 were up-regulated and 2267 down-regulated. The expression of acetyl-CoA synthetase, 6-phosphofructokinase, alcohol dehydrogenase (NADP+), fructose-bisphosphate aldolase, and pyruvate kinase was down-regulated while genes related to triglyceride synthesis were up-regulated. The majority of genes and pathways related to lipid biosynthesis were up-regulated indicating a diversion of metabolic pathways towards lipid biosynthesis. The data generated advance the genomic resources and provide insights into the mechanisms of ex-novo lipid accumulation in fungi that use exogenous oil as a carbon source.