
Analysis on inflowing of the injecting Water in faulted formation
Author(s) -
Youjun Ji,
Jie Wang,
Litang Huang
Publication year - 2015
Publication title -
advances in mechanical engineering/advances in mechanical engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.318
H-Index - 40
eISSN - 1687-8140
pISSN - 1687-8132
DOI - 10.1177/1687814015590294
Subject(s) - water injection (oil production) , permeability (electromagnetism) , petroleum engineering , water flooding , geology , coupling (piping) , geotechnical engineering , mechanics , stratum , engineering , mechanical engineering , chemistry , biochemistry , physics , membrane
As to low permeability reservoir, faults and fractures have a significant impact on effect of water injection and may lead up to the lower efficiency of oil displacement, which will bring about low efficiency of injecting water, and the intended purpose of improving recovery factor by water injection will not be reached. In order to reveal the mechanism for channeling of injecting water, research work is conducted as follows: First of all, based on seepage mechanics, fluid mechanics, rock mass mechanics, and multifield coupling theory, the mathematical model considering fluid–solid coupling of water-flooding development for low permeability reservoir is established, the numerical solution of the coupling model is obtained, and by creating an interface program between the seepage simulation procedure and stress computation program, we set up a feasible method to simulate the process of development of reservoir considering deformation of reservoir stratum; second, some cores are selected to test the stress sensitivity of rock in reservoir, and the relation of permeability and stress is proposed to connect the field parameters of the coupling model; finally, taking the S11 block of Daqing Oilfield, for instance, the seepage field and deformation of reservoir stratum is analyzed, and then the mechanism for leakage of injecting water in this block is given out, and the advice for adjustment of injection–production scheme in the future development stage is provided