z-logo
open-access-imgOpen Access
Correlation between TGF-β2/3 promoter DNA methylation and Smad signaling during palatal fusion induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin
Author(s) -
Yao Chen,
Xiaozhuan Liu,
Xinxin Liu,
Lingling Cui,
Zhidong He,
Zhan Gao,
Limin Liu,
Zhitao Li,
Zhongxiao Wan,
Zengli Yu
Publication year - 2021
Publication title -
experimental biology and medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.012
H-Index - 146
eISSN - 1535-3702
pISSN - 1535-3699
DOI - 10.1177/15353702211012288
Subject(s) - smad , dna methylation , transforming growth factor , methylation , epigenetics , medicine , signal transduction , biology , endocrinology , andrology , microbiology and biotechnology , dna , gene expression , genetics , gene
2,3,7,8-tetrachlorodibenzo- p -dioxin (TCDD) is a persistent organic pollutant that is strongly associated with a number of human diseases and birth defects, including cleft palate. Transforming growth factor (TGF) plays a significant role during mammalian palatogenesis. However, the epigenetic mechanism of transforming growth factors in the process of TCDD-induced cleft palate is unclear. The purpose of this research was to investigate the relationship and potential mechanism between TGF-β2/3 promoter DNA methylation and Smad signaling during TCDD-induced cleft palate. Pregnant C57BL/6N mice were exposed to 64 µg/kg TCDD on gestational day 10 (GD10) to establish the cleft palate model and palatal tissues of embryos were collected on GD13, GD14, and GD15 for subsequent experiments. TGF-β2/3 mRNA expression, TGF-β2/3 promoter methylation, and Smad signaling molecules expression were assessed in the palate of the two groups. The results showed that the incidence of cleft palate was 94.7% in the TCDD-treated group whereas no cleft palate was found in the control group. TCDD-treated group altered specific CpG sites of TGF-β2/3 promoter methylation. Compared to the control group, the proliferation of mouse embryonic palate mesenchymal stromal cells (MEPM), the expressions of TGF-β2/3, p-Smad2, and Smad4 were all reduced, while the expression of Smad7 was significantly increased in the atAR group. Smad signaling was downregulated by TCDD. Therefore, we suggest that TGF-β2/3 promoter methylation and Smad signaling may be involved in TCDD-induced cleft palate formation in fetal mice.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here