z-logo
open-access-imgOpen Access
PYGB Promoted Tumor Progression by Regulating Wnt/β-Catenin Pathway in Gastric Cancer
Author(s) -
Boning Xia,
Ke Zhang,
Chang Liu
Publication year - 2020
Publication title -
technology in cancer research and treatment
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.754
H-Index - 63
eISSN - 1533-0346
pISSN - 1533-0338
DOI - 10.1177/1533033820926592
Subject(s) - cancer , cancer research , glycogen phosphorylase , glycogen , metastasis , cancer cell , glycogen synthase , epithelial–mesenchymal transition , lung cancer , medicine , biology , endocrinology
Gastric cancer is one of the most common gastrointestinal malignancy with high mortality in East Asia. Investigation of pathogenic mechanisms of gastric cancer is crucial to develop novel therapeutic strategies and identify new therapeutic candidates. Brain-type glycogen phosphorylase is a glycogen phosphorylase involved in glycogen metabolism, which participates in multiple physiological and pathological processes. Overexpression of brain-type glycogen phosphorylase has been reported in various types of cancer, such as colorectal cancer and non-small cell lung cancer, however, the potential role of brain-type glycogen phosphorylase in gastric cancer remains unclear. Herein, we observed brain-type glycogen phosphorylase expression was significantly elevated in human gastric cancer tissues and positively correlated with the clinical-pathological features including tumor size, lymph node involvement, and tumor, node, metastasis stage of patients with gastric cancer. We further reported brain-type glycogen phosphorylase depletion suppressed the growth of gastric cancer, weakened the epithelial–mesenchymal transformation, and reduced the migration and invasion ability in cell models. We further confirmed brain-type glycogen phosphorylase depletion inhibited tumor growth and lung metastasis in mice. Importantly, we found brain-type glycogen phosphorylase regulated the progression of gastric cancer via Wnt/β-catenin pathway, shedding lights on brain-type glycogen phosphorylase as a promising therapeutic target for drug design and development targeting gastric cancer.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here