z-logo
open-access-imgOpen Access
In Silico Exploration of Phytoconstituents From Phyllanthus emblica and Aegle marmelos as Potential Therapeutics Against SARS-CoV-2 RdRp
Author(s) -
Khushboo Pandey,
Kiran Bharat Lokhande,
K. Venkateswara Swamy,
Shuchi Nagar,
Manjusha Dake
Publication year - 2021
Publication title -
bioinformatics and biology insights
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.556
H-Index - 23
ISSN - 1177-9322
DOI - 10.1177/11779322211027403
Subject(s) - docking (animal) , phyllanthus emblica , in silico , computational biology , autodock , chemistry , pharmacology , drug , stereochemistry , biology , biochemistry , medicine , traditional medicine , veterinary medicine , gene
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) worldwide has increased the importance of computational tools to design a drug or vaccine in reduced time with minimum risk. Earlier studies have emphasized the important role of RNA-dependent RNA polymerase (RdRp) in SARS-CoV-2 replication as a potential drug target. In our study, comprehensive computational approaches were applied to identify potential compounds targeting RdRp of SARS-CoV-2. To study the binding affinity and stability of the phytocompounds from Phyllanthus emblica and Aegel marmelos within the defined binding site of SARS-CoV-2 RdRp, they were subjected to molecular docking, 100 ns molecular dynamics (MD) simulation followed by post-simulation analysis. Furthermore, to assess the importance of features involved in the strong binding affinity, molecular field-based similarity analysis was performed. Based on comparative molecular docking and simulation studies of the selected phytocompounds with SARS-CoV-2 RdRp revealed that EBDGp possesses a stronger binding affinity (−23.32 kcal/mol) and stability than other phytocompounds and reference compound, Remdesivir (−19.36 kcal/mol). Molecular field-based similarity profiling has supported our study in the validation of the importance of the presence of hydroxyl groups in EBDGp, involved in increasing its binding affinity toward SARS-CoV-2 RdRp. Molecular docking and dynamic simulation results confirmed that EBDGp has better inhibitory potential than Remdesivir and can be an effective novel drug for SARS-CoV-2 RdRp. Furthermore, binding free energy calculations confirmed the higher stability of the SARS-CoV-2 RdRp-EBDGp complex. These results suggest that the EBDGp compound may emerge as a promising drug against SARS-CoV-2 and hence requires further experimental validation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here