
Modeling and analysis of hydrogen storage wind and gas complementary power generation system
Author(s) -
Zheng Li,
Senlin Hou,
Xin Cao,
Yan Qin,
Pengju Wang,
Shuai Che,
Haiyan Sun
Publication year - 2021
Publication title -
energy exploration and exploitation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.435
H-Index - 30
eISSN - 2048-4054
pISSN - 0144-5987
DOI - 10.1177/01445987211003382
Subject(s) - wind power , electric power system , electricity generation , wind power forecasting , volatility (finance) , power (physics) , computer science , power to gas , reliability engineering , economic dispatch , automotive engineering , engineering , electrical engineering , econometrics , chemistry , physics , electrolysis , electrode , quantum mechanics , electrolyte , economics
In view of the uncertainty and volatility of wind power generation and the inability to provide stable and continuous power, this paper proposes a hydrogen storage wind-gas complementary power generation system, using Matlab/Simulink to simulate and model wind generators and gas turbines. Considering the economy and power supply reliability of the wind-gas complementary power generation system, and taking the economic and environmental cost of the system as the objective function, the capacity optimization model of the wind-gas complementary power generation system is established. The brain storming algorithm (BSO) is used to solve the optimization problem, and the BSO algorithm is used to optimize the BP neural network, which improves the accuracy of the BP neural network for load forecasting. Finally, a simulation is carried out with load data in a certain area, and the simulation verification verifies that BSO-BP can improve the accuracy of load forecasting and reduce the error of load forecasting. Multi-objective optimization of system economic cost and environmental cost through BSO algorithm can make the system cost reach the most reasonable level. Through the analysis of the calculation examples, it is verified that gas-fired power generation can effectively alleviate the volatility of wind power generation, showing the role and advantages of energy complementary power generation. Therefore, the wind-gas complementary system can effectively increase energy utilization and reduce wind curtailment.