Premium
Specific and Pronounced Impacts of Lisinopril and Lisinopril Plus Simvastatin on Erythrocyte Antioxidant Enzymes
Author(s) -
Kaminsky Yury,
Suslikov Alexander,
Kosenko Elena
Publication year - 2010
Publication title -
the journal of clinical pharmacology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.92
H-Index - 116
eISSN - 1552-4604
pISSN - 0091-2700
DOI - 10.1177/0091270009344854
Subject(s) - lisinopril , simvastatin , glutathione peroxidase , endocrinology , medicine , chemistry , antioxidant , lactate dehydrogenase , catalase , blood pressure , pharmacology , glutathione reductase , angiotensin converting enzyme , biochemistry , enzyme
Angiotensin‐converting enzyme inhibitors are effective at reducing blood pressure, whereas statins decrease plasma cholesterol impeding atherosclerosis. It is hypothesized that these medications may improve blood pressure and serum cholesterol by modifying the antioxidative status and energy metabolism of erythrocytes. In this study, the effects of 2 treatments are compared: lisinopril alone versus lisinopril + simvastatin, on erythrocyte antioxidant and energy metabolic enzymes. Patients with atherosclerosis and moderate hypertension are randomly assigned to receive lisinopril 10 to 20 mg/d or lisinopril 10 to 20 mg/d plus simvastatin 20 mg/d for 24 weeks. Higher catalase activity and lower glutathione peroxidase activity are observed in 94% to 100% patients from both groups after 12 and 24 weeks of treatment. Superoxide dismutase activity is increased significantly only after 24 weeks. No changes of glutathione reductase, lactate dehydrogenase, and phosphofructokinase activities are found under any conditions indicated. Both treatments decrease systolic and diastolic blood pressure equally. Only lisinopril + simvastatin treatment decreases plasma total cholesterol and low‐density lipoprotein cholesterol. The results show for the first time that lisinopril monotherapy and combined lisinopril + simvastatin therapy exhibit specific and pronounced effects on antioxidant and energy metabolic enzyme activities in erythrocytes of hypertensive patients.