z-logo
open-access-imgOpen Access
Data Mining Numerical Model Output for Single-Station Cloud-Ceiling Forecast Algorithms
Author(s) -
Richard L. Bankert,
Michael Hadjimichael
Publication year - 2007
Publication title -
weather and forecasting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.393
H-Index - 106
eISSN - 1520-0434
pISSN - 0882-8156
DOI - 10.1175/waf1035.1
Subject(s) - ceiling (cloud) , cloud computing , algorithm , computer science , global forecast system , meteorology , data mining , numerical weather prediction , geography , operating system
Accurate cloud-ceiling-height forecasts derived from numerical weather prediction (NWP) model data are useful for aviation and other interests where low cloud ceilings have an impact on operations. A demonstration of the usefulness of data-mining methods in developing cloud-ceiling forecast algorithms from NWP model output is provided here. Rapid Update Cycle (RUC) 1-h forecast data were made available for nearly every hour in 2004. Various model variables were extracted from these data and stored in a database of hourly records for routine aviation weather report (METAR) station KJFK at John F. Kennedy International Airport along with other single-station locations. Using KJFK cloud-ceiling observations as ground truth, algorithms were derived for 1-, 3-, 6-, and 12-h forecasts through a data-mining process. Performance of these cloud-ceiling forecast algorithms, as evaluated through cross-validation testing, is compared with persistence and Global Forecast System (GFS) model output statistics (MOS) performance (6 and 12 h only) over the entire year. The 1-h algorithms were also compared with the RUC model cloud-ceiling (or cloud base) height translation algorithms. The cloud-ceiling algorithms developed through data mining outperformed these RUC model translation algorithms, showed slightly better skill and accuracy than persistence at 3 h, and outperformed persistence at 6 and 12 h. Comparisons to GFS MOS (which uses observations in addition to model data for algorithm derivation) at 6 h demonstrated similar performance between the two methods with the cloud-ceiling algorithm derived through data mining demonstrating more skill at 12 h.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here