z-logo
open-access-imgOpen Access
Evaluation of a Technique for Radar Identification of Large Hail across the Upper Midwest and Central Plains of the United States
Author(s) -
Rodney A. Donavon,
Karl Jungbluth
Publication year - 2007
Publication title -
weather and forecasting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.393
H-Index - 106
eISSN - 1520-0434
pISSN - 0882-8156
DOI - 10.1175/waf1008.1
Subject(s) - thunderstorm , national weather service , supercell , tornado , severe weather , percentile , radar , environmental science , meteorology , echo (communications protocol) , storm , climatology , geology , geography , mathematics , statistics , telecommunications , computer network , computer science
Radar data were analyzed for severe thunderstorms that produced severe hail (>19 mm diameter) across the central and northern plains of the United States during the 2001–04 convective seasons. Results showed a strongly linear relationship between the 50-dBZ echo height and the height of the melting level—so strong that a severe hail warning methodology was successfully deployed at the National Weather Service Warning and Forecast Offices in North Dakota and Iowa. Specifically, for each of 183 severe hailstorms, the 50-dBZ echo height near the hail event time was plotted against the depth of the environmental melting level. Linear regression revealed a coefficient of determination of 0.86, which suggested a strong linear relationship between the 50-dBZ echo height and the melting-level depth for the severe hail producing storms. As the height of the melting level increased, the expected 50-dBZ echo height increased. A severe warning criterion for large hail was based on the 10th percentile from the linear regression, producing a probability of detection of 90% and a false alarm rate of 22%. Additional analysis found that the 50-dBZ echo-height technique performs very well for weakly to moderately sheared thunderstorm environments. However, for strongly sheared, supercell-type environments, signatures such as weak-echo regions and three-body scatter spikes led to more rapid severe thunderstorm detection in many cases.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here