
An Integrated Approach for Assessing Tropical Cyclone Track and Intensity Forecasts
Author(s) -
Wenqing Zhang,
Lian Xie,
Bin Liu,
Changlong Guan
Publication year - 2017
Publication title -
weather and forecasting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.393
H-Index - 106
eISSN - 1520-0434
pISSN - 0882-8156
DOI - 10.1175/waf-d-16-0161.1
Subject(s) - tropical cyclone , intensity (physics) , track (disk drive) , forecast skill , meteorology , environmental science , benchmark (surveying) , range (aeronautics) , wind speed , function (biology) , statistics , computer science , mathematics , physics , geology , geodesy , engineering , quantum mechanics , aerospace engineering , evolutionary biology , biology , operating system
Track, intensity, and, in some cases, size are usually used as separate evaluation parameters to assess numerical model performance on tropical cyclone (TC) forecasts. Such an individual-parameter evaluation approach often encounters contradictory skill assessments for different parameters, for instance, small track error with large intensity error and vice versa. In this study, an intensity-weighted hurricane track density function (IW-HTDF) is designed as a new approach to the integrated evaluation of TC track, intensity, and size forecasts. The sensitivity of the TC track density to TC wind radius was investigated by calculating the IW-HTDF with density functions defined by 1) asymmetric, 2) symmetric, and 3) constant wind radii. Using the best-track data as the benchmark, IW-HTDF provides a specific score value for a TC forecast validated for a specific date and time or duration. This new TC forecast evaluation approach provides a relatively concise, integrated skill score compared with multiple skill scores when track, intensity and size are evaluated separately. It should be noted that actual observations of TC size data are very limited and so are the estimations of TC size forecasts. Therefore, including TC size as a forecast evaluation parameter is exploratory at the present. The proposed integrated evaluation method for TC track, intensity, and size forecasts can be used for evaluating the track forecast alone or in combination with intensity and size parameters. As observations and forecasts of TC size become routine in the future, including TC size as a forecast skill assessment parameter will become more imperative.