
Extreme Precipitation in Models: An Evaluation
Author(s) -
Gregory R. Herman,
Russ S. Schumacher
Publication year - 2016
Publication title -
weather and forecasting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.393
H-Index - 106
eISSN - 1520-0434
pISSN - 0882-8156
DOI - 10.1175/waf-d-16-0093.1
Subject(s) - weather research and forecasting model , climatology , mesoscale meteorology , environmental science , precipitation , meteorology , quantitative precipitation forecast , severe weather , storm , geology , geography
A continental United States (CONUS)-wide framework for analyzing quantitative precipitation forecasts (QPFs) from NWP models from the perspective of precipitation return period (RP) exceedances is introduced using threshold estimates derived from a combination of NOAA Atlas 14 and older sources. Forecasts between 2009 and 2015 from several different NWP models of varying configurations and spatial resolutions are analyzed to assess bias characteristics and forecast skill for predicting RP exceedances. Specifically, NOAA’s Global Ensemble Forecast System Reforecast (GEFS/R) and the National Severe Storms Laboratory WRF (NSSL-WRF) model are evaluated for 24-h precipitation accumulations. The climatology of extreme precipitation events for 6-h accumulations is also explored in three convection-allowing models: 1) NSSL-WRF, 2) the North American Mesoscale 4-km nest (NAM-NEST), and 3) the experimental High Resolution Rapid Refresh (HRRR). The GEFS/R and NSSL-WRF are both found to exhibit similar 24-h accumulation RP exceedance climatologies over the U.S. West Coast to those found in observations and are found to be approximately equally skillful at predicting these exceedance events in this region. In contrast, over the eastern two-thirds of the CONUS, GEFS/R struggles to predict the predominantly convectively driven extreme QPFs, predicting far fewer events than are observed and exhibiting inferior forecast skill to the NSSL-WRF. The NSSL-WRF and HRRR are found to produce 6-h extreme precipitation climatologies that are approximately in accord with those found in the observations, while NAM-NEST produces many more RP exceedances than are observed across all of the CONUS.