
Met Office Unified Model Tropical Cyclone Performance Following Major Changes to the Initialization Scheme and a Model Upgrade
Author(s) -
Julian Heming
Publication year - 2016
Publication title -
weather and forecasting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.393
H-Index - 106
eISSN - 1520-0434
pISSN - 0882-8156
DOI - 10.1175/waf-d-16-0040.1
Subject(s) - initialization , upgrade , tropical cyclone , meteorology , track (disk drive) , computer science , environmental science , data assimilation , numerical weather prediction , scheme (mathematics) , satellite , simulation , climatology , mathematics , geography , aerospace engineering , geology , engineering , mathematical analysis , programming language , operating system
The Met Office has used various schemes to initialize tropical cyclones (TCs) in its numerical weather prediction models since the 1980s. The scheme introduced in 1994 was particularly successful in reducing track forecast errors in the model. Following modifications in 2007 the scheme was still beneficial, although to a lesser degree than before. In 2012 a new trial was conducted that showed that the scheme now had a detrimental impact on TC track forecasts. As a consequence of this, the scheme was switched off. The Met Office Unified Model (MetUM) underwent a major upgrade in 2014 including a new dynamical core, changes to the model physics, an increase in horizontal resolution, and changes to satellite data usage. An evaluation of the impact of this change on TC forecasts found a positive impact both on track and particularly intensity forecasts. Following implementation of the new model formulation in 2014, a new scheme for initialization of TCs in the MetUM was developed that involved the assimilation of central pressure estimates from TC warning centers. A trial showed that this had a positive impact on both track and intensity predictions from the model. Operational results from the MetUM in 2014 and 2015 showed that the combined impact of the model upgrade and new TC initialization scheme was a dramatic cut in both TC track forecast errors and intensity forecast bias.