z-logo
open-access-imgOpen Access
Forecasting Tornadoes Using Convection-Permitting Ensembles
Author(s) -
Burkely T. Gallo,
Adam J. Clark,
Scott R. Dembek
Publication year - 2016
Publication title -
weather and forecasting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.393
H-Index - 106
eISSN - 1520-0434
pISSN - 0882-8156
DOI - 10.1175/waf-d-15-0134.1
Subject(s) - tornado , weather research and forecasting model , meteorology , environmental science , severe weather , storm , convective storm detection , forecast skill , geography
Hourly maximum fields of simulated storm diagnostics from experimental versions of convection-permitting models (CPMs) provide valuable information regarding severe weather potential. While past studies have focused on predicting any type of severe weather, this study uses a CPM-based Weather Research and Forecasting (WRF) Model ensemble initialized daily at the National Severe Storms Laboratory (NSSL) to derive tornado probabilities using a combination of simulated storm diagnostics and environmental parameters. Daily probabilistic tornado forecasts are developed from the NSSL-WRF ensemble using updraft helicity (UH) as a tornado proxy. The UH fields are combined with simulated environmental fields such as lifted condensation level (LCL) height, most unstable and surface-based CAPE (MUCAPE and SBCAPE, respectively), and multifield severe weather parameters such as the significant tornado parameter (STP). Varying thresholds of 2–5-km updraft helicity were tested with differing values of σ in the Gaussian smoother that was used to derive forecast probabilities, as well as different environmental information, with the aim of maximizing both forecast skill and reliability. The addition of environmental information improved the reliability and the critical success index (CSI) while slightly degrading the area under the receiver operating characteristic (ROC) curve across all UH thresholds and σ values. The probabilities accurately reflected the location of tornado reports, and three case studies demonstrate value to forecasters. Based on initial tests, four sets of tornado probabilities were chosen for evaluation by participants in the 2015 National Oceanic and Atmospheric Administration’s Hazardous Weather Testbed Spring Forecasting Experiment from 4 May to 5 June 2015. Participants found the probabilities useful and noted an overforecasting tendency.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here