z-logo
open-access-imgOpen Access
Verifying Forecast Precipitation Type with mPING*
Author(s) -
Kimberly L. Elmore,
Heather M. Grams,
D. Apps,
Heather D. Reeves
Publication year - 2015
Publication title -
weather and forecasting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.393
H-Index - 106
eISSN - 1520-0434
pISSN - 0882-8156
DOI - 10.1175/waf-d-14-00068.1
Subject(s) - precipitation , freezing rain , rain and snow mixed , environmental science , precipitation types , snow , quantitative precipitation forecast , mesoscale meteorology , climatology , meteorology , winter storm , atmospheric sciences , geology , geography
In winter weather, precipitation type is a pivotal characteristic because it determines the nature of most preparations that need to be made. Decisions about how to protect critical infrastructure, such as power lines and transportation systems, and optimize how best to get aid to people are all fundamentally precipitation-type dependent. However, current understanding of the microphysical processes that govern precipitation type and how they interplay with physics-based numerical forecast models is incomplete, degrading precipitation-type forecasts, but by how much? This work demonstrates the utility of crowd-sourced surface observations of precipitation type from the Meteorological Phenomena Identification Near the Ground (mPING) project in estimating the skill of numerical model precipitation-type forecasts and, as an extension, assessing the current model performance regarding precipitation type in areas that are otherwise without surface observations. In general, forecast precipitation type is biased high for snow and rain and biased low for freezing rain and ice pellets. For both the North American Mesoscale Forecast System and Global Forecast System models, Gilbert skill scores are between 0.4 and 0.5 and from 0.35 to 0.45 for the Rapid Refresh model, depending on lead time. Peirce skill scores for individual precipitation types are 0.7–0.8 for both rain and snow, 0.2–0.4 for freezing rain and freezing rain, and 0.25 or less for ice pellets. The Rapid Refresh model displays somewhat lower scores except for ice pellets, which are severely underforecast, compared to the other models.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here