z-logo
open-access-imgOpen Access
Impact of Microphysics Parameterizations on Simulations of the 27 October 2010 Great Salt Lake–Effect Snowstorm
Author(s) -
John D. McMillen,
W. James Steenburgh
Publication year - 2015
Publication title -
weather and forecasting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.393
H-Index - 106
eISSN - 1520-0434
pISSN - 0882-8156
DOI - 10.1175/waf-d-14-00060.1
Subject(s) - graupel , weather research and forecasting model , environmental science , precipitation , snow , meteorology , winter storm , radar , storm , weather radar , orography , climatology , atmospheric sciences , computer science , geology , geography , telecommunications
Simulations of moist convection at cloud-permitting grid spacings are sensitive to the parameterization of microphysical processes, posing a challenge for operational weather prediction. Here, the Weather Research and Forecasting (WRF) Model is used to examine the sensitivity of simulations of the Great Salt Lake–effect snowstorm of 27 October 2010 to the choice of microphysics parameterization (MP). It is found that the simulated precipitation from four MP schemes varies in areal coverage, amount, and position. The Thompson scheme (THOM) verifies best against radar-derived precipitation estimates and gauge observations. The Goddard, Morrison, and WRF double-moment 6-class microphysics schemes (WDM6) produce more precipitation than THOM, with WDM6 producing the largest overprediction relative to radar-derived precipitation estimates and gauge observations. Analyses of hydrometeor mass tendencies show that WDM6 creates more graupel, less snow, and more total precipitation than the other schemes. These results indicate that the rate of graupel and snow production can strongly influence the precipitation efficiency in simulations of lake-effect storms, but further work is needed to evaluate MP-scheme accuracy across a wider range of events, including the use of aircraft- and ground-based hydrometeor sampling to validate MP hydrometeor categorization.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here