
Impact of Bias-Correction Type and Conditional Training on Bayesian Model Averaging over the Northeast United States
Author(s) -
Michael J. Erickson,
Brian A. Colle,
Joseph J. Charney
Publication year - 2012
Publication title -
weather and forecasting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.393
H-Index - 106
eISSN - 1520-0434
pISSN - 0882-8156
DOI - 10.1175/waf-d-11-00149.1
Subject(s) - wind speed , statistics , environmental science , probabilistic logic , meteorology , range (aeronautics) , bayesian probability , conditional probability , mathematics , climatology , econometrics , physics , engineering , geology , aerospace engineering
The performance of a multimodel ensemble over the northeast United States is evaluated before and after applying bias correction and Bayesian model averaging (BMA). The 13-member Stony Brook University (SBU) ensemble at 0000 UTC is combined with the 21-member National Centers for Environmental Prediction (NCEP) Short-Range Ensemble Forecast (SREF) system at 2100 UTC. The ensemble is verified using 2-m temperature and 10-m wind speed for the 2007–09 warm seasons, and for subsets of days with high ozone and high fire threat. The impacts of training period, bias-correction method, and BMA are explored for these potentially hazardous weather events using the most recent consecutive (sequential training) and most recent similar days (conditional training). BMA sensitivity to the selection of ensemble members is explored. A running mean difference between forecasts and observations using the last 14 days is better at removing temperature bias than is a cumulative distribution function (CDF) or linear regression approach. Wind speed bias is better removed by adjusting the modeled CDF to the observation. High fire threat and ozone days exhibit a larger cool bias and a greater negative wind speed bias than the warm-season average. Conditional bias correction is generally better at removing temperature and wind speed biases than sequential training. Greater probabilistic skill is found for temperature using both conditional bias correction and BMA compared to sequential bias correction with or without BMA. Conditional and sequential BMA results are similar for 10-m wind speed, although BMA typically improves probabilistic skill regardless of training.