z-logo
open-access-imgOpen Access
Hindcasting the January 2009 Arctic Sudden Stratospheric Warming with Unified Parameterization of Orographic Drag in NOGAPS. Part II: Short-Range Data-Assimilated Forecast and the Impacts of Calibrated Radiance Bias Correction
Author(s) -
Young-Joon Kim,
W. F. Campbell,
Benjamin Ruston
Publication year - 2011
Publication title -
weather and forecasting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.393
H-Index - 106
eISSN - 1520-0434
pISSN - 0882-8156
DOI - 10.1175/waf-d-10-05045.1
Subject(s) - hindcast , data assimilation , environmental science , radiance , meteorology , numerical weather prediction , climatology , stratosphere , orographic lift , remote sensing , precipitation , geology , geography
This study is Part II of the effort to improve the forecasting of sudden stratospheric warming (SSW) events by using a version of the Navy Operational Global Atmospheric Prediction System (NOGAPS) that covers the full stratosphere. In Part I, extended-range (3 week) hindcast experiments (without data assimilation) for the January 2009 Arctic major SSW were performed using NOGAPS with a unified orographic drag parameterization that consists of the schemes employed by Webster et al., as well as Kim and Arakawa and Kim and Doyle. Part I demonstrated that the model with upgraded middle-atmospheric orographic drag physics better forecasts the magnitude and evolution of the SSW and better simulates the trend of the Arctic Oscillation (AO) index. In this study (Part II), a series of 5-day hindcast experiments is performed with cycling data assimilation using the Naval Research Laboratory Atmospheric Variational Data Assimilation System-Accelerated Representer (NAVDAS-AR), a four-dimensional variational data assimilation (4DVAR) system. Further efforts are made to improve the hindcasting of SSW by improving the satellite radiance bias correction process that strongly affects the data assimilation. The innovation (observation minus background) limit is optimally determined to reduce the rejection of useful radiance data. It is found that when the innovation limit is properly set, both the analysis and forecast of the SSW event can be improved, and that the orographic drag helps improve the SSW forecast.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here