z-logo
open-access-imgOpen Access
Verification of an Ensemble Prediction System against Observations
Author(s) -
Guillem Candille,
Christopher K. Cote,
P. L. Houtekamer,
G. Pellerin
Publication year - 2007
Publication title -
monthly weather review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.862
H-Index - 179
eISSN - 1520-0493
pISSN - 0027-0644
DOI - 10.1175/mwr3414.1
Subject(s) - resampling , computer science , probabilistic logic , reliability (semiconductor) , forecast verification , autocorrelation , confidence interval , statistics , data mining , partition (number theory) , forecast skill , mathematics , algorithm , artificial intelligence , power (physics) , physics , quantum mechanics , combinatorics
A verification system has been developed for the ensemble prediction system (EPS) at the Canadian Meteorological Centre (CMC). This provides objective criteria for comparing two EPSs, necessary when deciding whether or not to implement a new or revised EPS. The proposed verification methodology is based on the continuous ranked probability score (CRPS), which provides an evaluation of the global skill of an EPS. Its reliability/resolution partition, proposed by Hersbach, is used to measure the two main attributes of a probabilistic system. Also, the characteristics of the reliability are obtained from the two first moments of the reduced centered random variable (RCRV), which define the bias and the dispersion of an EPS. Resampling bootstrap techniques have been applied to these scores. Confidence intervals are thus defined, expressing the uncertainty due to the finiteness of the number of realizations used to compute the scores. All verifications are performed against observations to provide more independent validations and to avoid any local systematic bias of an analysis. A revised EPS, which has been tested at the CMC in a parallel run during the autumn of 2005, is described in this paper. This EPS has been compared with the previously operational one with the verification system presented above. To illustrate the verification methodology, results are shown for the temperature at 850 hPa. The confidence intervals are computed by taking into account the spatial correlation of the data and the temporal autocorrelation of the forecast error. The revised EPS performs significantly better for all the forecast ranges, except for the resolution component of the CRPS where the improvement is no longer significant from day 7. The significant improvement of the reliability is mainly due to a better dispersion of the ensemble. Finally, the verification system correctly indicates that variations are not significant when two theoretically similar EPSs are compared.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here