z-logo
open-access-imgOpen Access
Synoptic–Dynamic Climatology of Large-Scale Cyclones in the North Pacific
Author(s) -
Linda M. Keller,
Michael C. Morgan,
David D. Houghton,
Ross A. Lazear
Publication year - 2006
Publication title -
monthly weather review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.862
H-Index - 179
eISSN - 1520-0493
pISSN - 0027-0644
DOI - 10.1175/mwr3260.1
Subject(s) - geopotential height , climatology , trough (economics) , troposphere , synoptic scale meteorology , advection , cyclone (programming language) , extratropical cyclone , zonal flow (plasma) , anomaly (physics) , tropical cyclone , geopotential , geology , cyclogenesis , environmental science , baroclinity , geography , meteorology , precipitation , physics , plasma , condensed matter physics , field programmable gate array , computer science , computer hardware , economics , tokamak , macroeconomics , thermodynamics , quantum mechanics
A climatology of large-scale, persistent cyclonic flow anomalies over the North Pacific was constructed using the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) global reanalysis data for the cold season (November–March) for 1977–2003. These large-scale cyclone (LSC) events were identified as those periods for which the filtered geopotential height anomaly at a given analysis point was at least 100 m below its average for the date for at least 10 days. This study identifies a region of maximum frequency of LSC events at 45°N, 160°W [key point 1 (KP1)] for the entire period. This point is somewhat to the east of regions of maximum height variability noted in previous studies. A second key point (37.5°N, 162.5°W) was defined as the maximum in LSC frequency for the period after November 1988. The authors show that the difference in location of maximum LSC frequency is linked to a climate regime shift at about that time. LSC events occur with a maximum frequency in the period from November through January. A composite 500-hPa synoptic evolution, constructed relative to the event onset, suggests that the upper-tropospheric precursor for LSC events emerges from a quasi-stationary long-wave trough positioned off the east coast of Asia. In the middle and lower troposphere, the events are accompanied by cold thickness advection from a thermal trough over northeastern Asia. The composite mean sea level evolution reveals a cyclone that deepens while moving from the coast of Asia into the central Pacific. As the cyclone amplifies, it slows down in the central Pacific and becomes nearly stationary within a day of onset. Following onset, at 500 hPa, a stationary wave pattern, resembling the Pacific–North American teleconnection pattern, emerges with a ridge immediately downstream (over western North America) and a trough farther downstream (from the southeast coast of the United States into the western North Atlantic). The implications for the resulting sensible weather and predictability of the flow are discussed. An adjoint-derived sensitivity study was conducted for one of the KP1 cases identified in the climatology. The results provide dynamical confirmation of the LSC precursor identification for the events. The upper-tropospheric precursor is seen to play a key role not only in the onset of the lower-tropospheric height falls and concomitant circulation increases, but also in the eastward extension of the polar jet across the Pacific. The evolution of the forecast sensitivities suggest that LSC events are not a manifestation of a modal instability of the time mean flow, but rather the growth of a favorably configured perturbation on the flow.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here