
Fourier-Ray Modeling of Short-Wavelength Trapped Lee Waves Observed in Infrared Satellite Imagery near Jan Mayen
Author(s) -
Stephen D. Eckermann,
Dave Broutman,
Jun Ma,
John Lindeman
Publication year - 2006
Publication title -
monthly weather review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.862
H-Index - 179
eISSN - 1520-0493
pISSN - 0027-0644
DOI - 10.1175/mwr3218.1
Subject(s) - radiosonde , geology , baroclinity , wavelength , fourier transform , advanced very high resolution radiometer , physics , meteorology , satellite , optics , remote sensing , climatology , astronomy , quantum mechanics
A time-dependent generalization of a Fourier-ray method is presented and tested for fast numerical computation of high-resolution nonhydrostatic mountain-wave fields. The method is used to model mountain waves from Jan Mayen on 25 January 2000, a period when wavelike cloud banding was observed long distances downstream of the island by the Advanced Very High Resolution Radiometer Version 3 (AVHRR-3). Surface weather patterns show intensifying surface geostrophic winds over the island at 1200 UTC caused by rapid eastward passage of a compact low pressure system. The 1200 UTC wind profiles over the island increase with height to a jet maximum of ∼60–70 m s−1, yielding Scorer parameters that indicate vertical trapping of any short wavelength mountain waves. Separate Fourier-ray solutions were computed using high-resolution Jan Mayen orography and 1200 UTC vertical profiles of winds and temperatures over the island from a radiosonde sounding and an analysis system. The radiosonde-based simulations produce a purely diverging trapped wave solution that reproduces the salient features in the AVHRR-3 imagery. Differences in simulated wave patterns governed by the radiosonde and analysis profiles are explained in terms of resonant modes and are corroborated by spatial ray-group trajectories computed for wavenumbers along the resonant mode curves. Output from a nonlinear Lipps–Hemler orographic flow model also compares well with the Fourier-ray solution horizontally. Differences in vertical cross sections are ascribed to the Fourier-ray model’s current omission of tunneling of trapped wave energy through evanescent layers.