z-logo
open-access-imgOpen Access
Improving Week-2 Forecasts with Multimodel Reforecast Ensembles
Author(s) -
Jeffrey S. Whitaker,
Wanqi Xue,
Frédéric Vitart
Publication year - 2006
Publication title -
monthly weather review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.862
H-Index - 179
eISSN - 1520-0493
pISSN - 0027-0644
DOI - 10.1175/mwr3175.1
Subject(s) - probabilistic logic , horizontal resolution , climatology , computer science , meteorology , environmental science , forecast skill , artificial intelligence , geology , geography
It has recently been demonstrated that model output statistics (MOS) computed from a long retrospective dataset of ensemble “reforecasts” from a single model can significantly improve the skill of probabilistic week-2 forecasts (with the same model). In this study the technique is extended to a multimodel reforecast dataset consisting of forecasts from ECMWF and NCEP global models. Even though the ECMWF model is more advanced than the version of the NCEP model used (it has more than double the horizontal resolution and is about five years newer), the forecasts produced by the multimodel MOS technique are more skillful than those produced by the MOS technique applied to either the NCEP or ECMWF forecasts alone. These results demonstrate that the MOS reforecast approach yields benefits for week-2 forecasts that are just as large for high-resolution state-of-the-art models as they are for relatively low resolution out-of-date models. Furthermore, operational forecast centers can benefit by sharing both retrospective reforecast datasets and real-time forecasts.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here