z-logo
open-access-imgOpen Access
The Spatial Variability of Moisture in the Boundary Layer and Its Effect on Convection Initiation: Project-Long Characterization
Author(s) -
Frédéric Fabry
Publication year - 2006
Publication title -
monthly weather review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.862
H-Index - 179
eISSN - 1520-0493
pISSN - 0027-0644
DOI - 10.1175/mwr3055.1
Subject(s) - mesoscale meteorology , planetary boundary layer , environmental science , atmospheric sciences , moisture , boundary layer , convective boundary layer , convection , entrainment (biomusicology) , convective storm detection , mesoscale convective system , potential temperature , sunset , sunrise , meteorology , climatology , geology , mechanics , geography , philosophy , physics , astronomy , rhythm , aesthetics
An attempt was made to statistically gauge the importance of moisture variability on convection initiation by analyzing data collected by radar, surface stations, soundings, and airborne in situ sensors over the 7 weeks of the International H2O Project (IHOP_2002). Based on radar refractivity data, the spatial structure of humidity near the surface proved to be very anisotropic, crosswind variability being typically twice as large as along-wind variability, in part as a result of the west-to-east climatological gradient in moisture across the Oklahoma panhandle. Variability in humidity was largest from the afternoon to sunset and smallest a few hours before and after sunrise. At the surface, variograms of refractivity increase almost linearly with scale in the crosswind direction, suggesting that the field of moisture shows little in terms of local maxima and minima. Higher in the boundary layer, moisture variability increases at small scales because of the entrainment of dry capping stable layer air as the daytime boundary layer grows, and the rate of that dry-air entrainment could be used to calculate surface moisture variability. The effect of the observed variability in moisture and temperature in the upper boundary layer on convective inhibition was quantified and contrasted with the effect expected from boundary layer updrafts. At synoptic scales and at the upper end of the mesoscale, the location of convection initiation is most sensitive to the variability in temperature. At smaller scales, storm development becomes extremely sensitive to the strength of updrafts; however, those same updrafts also magnify the effect of moisture and temperature variability, as a result of which the effect of small-scale moisture variability cannot be ignored. Some of the consequences of these findings on the representativeness of radiosonde measurements in the boundary layer and instrumentation needs for convection initiation forecasting are surveyed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here