
Low-Level Kinematic, Thermodynamic, and Reflectivity Fields Associated with Hurricane Bonnie (1998) at Landfall
Author(s) -
Rebecca L. Schneider,
G. Barnes
Publication year - 2005
Publication title -
monthly weather review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.862
H-Index - 179
eISSN - 1520-0493
pISSN - 0027-0644
DOI - 10.1175/mwr3027.1
Subject(s) - eye , outflow , meteorology , tropical cyclone , storm , submarine pipeline , geology , airflow , climatology , rainband , inflow , environmental science , oceanography , geography , mechanical engineering , engineering
During 11 h on 26 August 1998, two NOAA WP-3D aircraft deployed 85 Global Positioning System (GPS) dropwindsondes within 2° of latitude of the circulation center of Hurricane Bonnie as it made landfall in North Carolina. About 75% of the sondes successfully collected data, which were used to create a series of storm-relative horizontal maps of kinematic and thermodynamic variables from 10 m to 2 km. Reflectivity fields were analyzed from the Weather Surveillance Radar-1988 Dopplers (WSR-88Ds) located at Wilmington and Morehead City, North Carolina, and the tail and lower fuselage radars aboard the WP-3Ds. GPS sonde performance and deployment spacing is adequate to identify several aspects of the vortex. These include 1) warm, dry, stable air in the offshore flow that results in reduced equivalent potential temperatures entering the southern portion of the eyewall, 2) cooler air collocated with the upwelled water in the right-rear quadrant and under the eyewall, and 3) an atypical radial wind pattern with strong inflow southwest of the circulation center and outflow northeast of the center. The strongly asymmetric structure found at 10 m becomes much more homogeneous by 2-km altitude. No intense rainbands developed over land in the onshore flow nor did the bands in the onshore flow undergo any significant changes once they made landfall. Beyond the eyewall the offshore flow contained much less precipitation than the onshore portion of the storm. Characteristics beyond the eyewall appear to have been modulated by the proximity to land but hurricane intensity did not vary. The authors infer that the lower energy content of the inflow was offset by the contraction of the eyewall.